Best Practices for Creating Technical Video Scripts

1. Audience and Purpose
» Target Audience: Write for technically savvy readers such as engineers,
developers, architects who seek to understand both how and why the system
works.
» Purpose: Go beyond how-to instructions. Explain underlying principles, system
internals, and design rationale to empower users to build robust solutions.

2. Content Structure

» High-Level Overview First: Begin with a concise summary of the technology, its
core features, and its differentiators.

» Progressive Disclosure: Start with foundational concepts, then move to core
mechanisms, and finally cover advanced topics and edge cases.

» Logical Flow: Organize content into thematic sections (e.g., Data Model,
Indexing, Transactions, APIs, Advanced Features).

» Table of Contents: Provide a detailed contents section for easy navigation.

Content Structure

Eillgsrti-Level Overview = Logical Flow Table of Contents
— Detailded ontents Detailed contents sectio
Concise summary of section for ) n for easy navigation.
technology, core features, easy navigation
differentiators
_, & Foundational £ Data Model

N~ Concepts
Concise summary .
of technology, | & Core ¢ Indexing
core features, and -7 @0 Mechanisms
differentiators = Transactions
g Advanced o
Topics &
Edge Cases ? APIs

- oo Advanced Features

3. Clarity and Precision
» Define Terms: Clearly define technical terms and acronyms on first use.
» Use Examples: lllustrate concepts with practical examples, code snippets, and
real-world analogies.



»

»

Visual Aids: Include diagrams, tables, and figures to clarify complex
relationships and processes.

Summarize Key Points: End major sections with concise summaries or key
takeaways.

4. Depth and Transparency

»

»

»

Explain Internals: Describe not just what happens, but how and why (e.g., how
indexes are built, why certain design choices were made).

Performance and Trade-offs: Discuss the impact of configuration options,
including performance, scalability, and resource usage.

Edge Cases and Limitations: Explicitly call out limitations, edge cases, and
scenarios where defaults may not apply.

5. Consistency and Style

»

»

»

»

Consistent Terminology: Use the same terms throughout. If synonyms are
used, clarify their equivalence.

Active Voice: Prefer active voice for clarity (e.g., 'MarkLogic indexes documents'
instead of 'Documents are indexed').

Neutral, Professional Tone: Maintain an objective, informative, and
approachable style.

Citations and References: Reference official documentation, guides, and
relevant standards where appropriate.

6. Code and APl Documentation

»

4
4

Language Coverage: Provide code examples in all supported languages (e.g.,
XQuery, JavaScript, REST, SPARQL).

Explain Code: Annotate code snippets to clarify purpose and logic.

Link to APl Docs: Reference official APl documentation for deeper dives.



Language Coverage

A

'S ! g
(P W
<> ==
S
Provide Annotate Link to
Code code snippets API Docs
Provide code to clarify Reference
examples in purpose and official API
all supported logic documentation
languages for deeper dives.
XQuery, JavaScript, Annotate Link to
REST, SPARQL code snippets API Docs

7. Operational Guidance
» Configuration Guidance: Explain the rationale behind default settings and when
to adjust them.
» Best Practices: Highlight recommended patterns for data modeling, indexing,
querying, and scaling.
» Troubleshooting: Include common pitfalls, diagnostic tips, and links to further
resources.

8. Security and Compliance
» Role-Based Security: Explain how permissions and roles affect data visibility
and operations.
» Compliance Notes: Reference relevant certifications or compliance standards
(e.g., NIAP CCEVS).

9. Extensibility and Ecosystem
» Ecosystem Awareness: Mention related tools, libraries, and community
projects.
» Extensibility Points: Document APIs, plug-in mechanisms, and integration
options.

10. Maintenance and Evolution
» Versioning: Note which features are version-specific and track changes across
releases.



» Deprecations: Clearly mark deprecated features and recommend alternatives.
» Example Application: When documenting a feature like 'Indexing in MarkLogic,'
apply these rules:

O

Start with a conceptual overview (what is indexing, why is it important). Break
down types of indexes (Universal, Range, Reverse, etc.).

Use diagrams to show how term lists and parent-child relationships work.
Provide annotated code for enabling/disabling indexes.

Discuss performance implications and reindexing strategies.

Reference the official MarkLogic documentation for advanced configuration.



Sample Workflow Template for Creating Technical Video Scripts

2, AUDIENCE AND PURPOSE

% CONTENT STRUCTURE

Define target
audience

@

Clary g High-fevel

_ overview

H

purpose _

g

Progressive
disclosure

Logical flow with
thematic sections

Table of contents T

(1) THEMATIC SECTIONS
B—
Data model
B—
Indexing

-ﬁ

Transactions

)

APl

|

Advanced
features
/
CLARITY AND PRECISION @ DEPTH AND TRANSPARENCY
B Y © A 5
Define terms Use eaau_a . ize ke Explain internals iscuss Ilout edge
and acronyms and analogies Visualelds points and rationale peformance end 0ases énd
_ trade-offs limitations
J
/) CONSISTENCY AND STYLE <> CODE AND APt DOCUMENTATION @ (OPERATIONAL GUIDANCE
@) © B B () ©
cz consistent iz active _.és neutral, Provide o.s._o__u Mﬁ. 8““3_._ Annotate code Link to official _ mé_ns. :a_,__oz best Troubleshooting
terminology voice oaamu_o._n_ tone and ina_ss _Ea””“s snippets API docs _ _ oc,_me_s practices tips
O SECURITY AND COMPLIANCE () EXTENSBILITY ANO ECOSYSTEM i 3 MANTENANCE AND EVOLUTION
© ©) ]
o_oa._s 8:3.2 - Mark eview and
mé_ms role- Mention related Note versioning ) s
based security .8_m and libraries and changes deprecations updte
standards _ points _ and alternatives documentation _ Dooumentation
complete and
maintained







