Best Practices for Creating Technical Video Scripts

1. Audience and Purpose
» Target Audience: Write for technically savvy readers such as engineers,
developers, architects who seek to understand both how and why the system
works.
» Purpose: Go beyond how-to instructions. Explain underlying principles, system
internals, and design rationale to empower users to build robust solutions.

2. Content Structure

» High-Level Overview First: Begin with a concise summary of the technology, its
core features, and its differentiators.

» Progressive Disclosure: Start with foundational concepts, then move to core
mechanisms, and finally cover advanced topics and edge cases.

» Logical Flow: Organize content into thematic sections (e.g., Data Model,
Indexing, Transactions, APIs, Advanced Features).

» Table of Contents: Provide a detailed contents section for easy navigation.
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3. Clarity and Precision
» Define Terms: Clearly define technical terms and acronyms on first use.
» Use Examples: lllustrate concepts with practical examples, code snippets, and
real-world analogies.



»

»

Visual Aids: Include diagrams, tables, and figures to clarify complex
relationships and processes.

Summarize Key Points: End major sections with concise summaries or key
takeaways.

4. Depth and Transparency

»

»

»

Explain Internals: Describe not just what happens, but how and why (e.g., how
indexes are built, why certain design choices were made).

Performance and Trade-offs: Discuss the impact of configuration options,
including performance, scalability, and resource usage.

Edge Cases and Limitations: Explicitly call out limitations, edge cases, and
scenarios where defaults may not apply.

5. Consistency and Style

»

»

»

»

Consistent Terminology: Use the same terms throughout. If synonyms are
used, clarify their equivalence.

Active Voice: Prefer active voice for clarity (e.g., 'MarkLogic indexes documents'
instead of 'Documents are indexed').

Neutral, Professional Tone: Maintain an objective, informative, and
approachable style.

Citations and References: Reference official documentation, guides, and
relevant standards where appropriate.

6. Code and APl Documentation

»

4
4

Language Coverage: Provide code examples in all supported languages (e.g.,
XQuery, JavaScript, REST, SPARQL).

Explain Code: Annotate code snippets to clarify purpose and logic.

Link to APl Docs: Reference official APl documentation for deeper dives.
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7. Operational Guidance
» Configuration Guidance: Explain the rationale behind default settings and when
to adjust them.
» Best Practices: Highlight recommended patterns for data modeling, indexing,
querying, and scaling.
» Troubleshooting: Include common pitfalls, diagnostic tips, and links to further
resources.

8. Security and Compliance
» Role-Based Security: Explain how permissions and roles affect data visibility
and operations.
» Compliance Notes: Reference relevant certifications or compliance standards
(e.g., NIAP CCEVS).

9. Extensibility and Ecosystem
» Ecosystem Awareness: Mention related tools, libraries, and community
projects.
» Extensibility Points: Document APIs, plug-in mechanisms, and integration
options.

10. Maintenance and Evolution
» Versioning: Note which features are version-specific and track changes across
releases.



» Deprecations: Clearly mark deprecated features and recommend alternatives.
» Example Application: When documenting a feature like 'Indexing in MarkLogic,'
apply these rules:

O

Start with a conceptual overview (what is indexing, why is it important). Break
down types of indexes (Universal, Range, Reverse, etc.).

Use diagrams to show how term lists and parent-child relationships work.
Provide annotated code for enabling/disabling indexes.

Discuss performance implications and reindexing strategies.

Reference the official MarkLogic documentation for advanced configuration.



Sample Workflow Template for Creating Technical Video Scripts
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